Answer:
Option A
Explanation:
We have,
SBS' is an isosceless right angled triangle.
$\therefore$ $SS'^{2}=SB^{2}+S'B^{2}$
$\Rightarrow$ $(2ae)^{2}=b^{2}+(ae)^{2}+b^{2}+(ae)^{2}$
$\Rightarrow$ $4(ae)^{2}=2(b^{2}+(ae)^{2})$
$\Rightarrow$ $(ae)^{2}=b^{2}$
$\Rightarrow$ $e^{2}=\frac{b^{2}}{a^{2}}$
$\Rightarrow$ $1-e^{2}=1- \frac{b^{2}}{a^{2}}$
$\Rightarrow$ $1-e^{2}=e^{2}$
$\left[\because e=\sqrt{1-\frac{b^{2}}{a^{2}}}\right]$
$\Rightarrow$ $2e^{2}=1$
$\Rightarrow$ $e=\frac{1}{\sqrt{2}}$